사이킷런에서 제공하는 의사결정나무 코드를 실습한다.
print(__doc__)
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier, plot_tree
# Parameters
n_classes = 3
plot_colors = "ryb"
plot_step = 0.02
# Load data
iris = load_iris()
for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3],
[1, 2], [1, 3], [2, 3]]):
# We only take the two corresponding features
X = iris.data[:, pair]
y = iris.target
# Train
clf = DecisionTreeClassifier().fit(X, y)
# Plot the decision boundary
plt.subplot(2, 3, pairidx + 1)
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),
np.arange(y_min, y_max, plot_step))
plt.tight_layout(h_pad=0.5, w_pad=0.5, pad=2.5)
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
cs = plt.contourf(xx, yy, Z, cmap=plt.cm.RdYlBu)
plt.xlabel(iris.feature_names[pair[0]])
plt.ylabel(iris.feature_names[pair[1]])
# Plot the training points
for i, color in zip(range(n_classes), plot_colors):
idx = np.where(y == i)
plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i],
cmap=plt.cm.RdYlBu, edgecolor='black', s=15)
plt.suptitle("Decision surface of a decision tree using paired features")
plt.legend(loc='lower right', borderpad=0, handletextpad=0)
plt.axis("tight")
plt.figure()
clf = DecisionTreeClassifier().fit(iris.data, iris.target)
# plot_tree(clf, filled=True)
plt.show()
참조 : scikit-learn.org/stable/auto_examples/tree/plot_iris_dtc.html#sphx-glr-auto-examples-tree-plot-iris-dtc-py
Plot the decision surface of a decision tree on the iris dataset — scikit-learn 0.23.2 documentation
Note Click here to download the full example code or to run this example in your browser via Binder Plot the decision surface of a decision tree on the iris dataset Plot the decision surface of a decision tree trained on pairs of features of the iris datas
scikit-learn.org
'머신러닝 > 알고리즘' 카테고리의 다른 글
4-1-1. 타이타닉 생존자 예측 - 의사결정나무 (0) | 2020.09.11 |
---|---|
4-1. 타이타닉 생존자 예측 학습 데이터 준비 (0) | 2020.09.11 |
2-1-1. Decision Tree 실습 1 (0) | 2020.09.09 |
2-1. Decision Tree (의사결정나무) (0) | 2020.09.09 |
1-3-2. KNN 실습 2 (0) | 2020.09.08 |